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Abstract—The internal circulation of a liquid droplet moving through a gas is analyzed in a parameter range
relevant for a burning air-fuel spray mixture in a typical combustor. The analysis indicates axisymmetric
quasi-steady liquid motion with a spherical core vortex surrounded by a viscous boundary layer and an
internal wake. The vortex strength is determined as a function of the shear stress along the droplet surface.
Furthermore, analysis indicates that the droplet heating is unsteady during its lifetime. The internal
circulation is shown to one-dimensionalize effectively the heat conduction in the liquid core. The thermal
boundary layer near the surface is also analyzed and it is shown that the droplet temperature field may be
determined given the gas-liquid interface constraint.

NOMENCLATURE

strength of the Hill’s vortex as used in (2);

by—b;, constants related to a,—a,, given

Cy,
Gy

D

76,
F(6),

g(Y), anunknown function of Y as used in {14a);

by (A2);

constant used in {21b);

constant used in (26b);

specific heat at constant pressure ;
diameter of the droplet;

related to F(8) by {14b);

shear stress distribution at the interface;

g1(¢), g-{¢), dimensionless function of ¢

Uma

defined by (25);

= Ar® cos® 8/2q,, scale factor in
streamwise direction ;

= 1/{rsin8q,), scale factor normal to
streamline in an azimuthal plane;

= rsin @, scale factor in azimuthal
direction;

= U /AR?, ratio of characteristic velocity.
in gas to that in liquid ;

= r/R, dimensionless distance;
Peclet number ;

Prandt] number;

velocity vector;

velocity in streamwise direction ;
radial distance in spherical polar
co-ordinate system;

radius of droplet ;

Reynolds number ;

time ;

temperature ;

initial temperature ;

boiling point of liquid;

dimensionless velocity defined by (10);
free stream gas velocity relative to
droplet;

= AR, characteristic liquid velocity ;
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e

variable defined in the thermal
boundary layer;

transformed dimensionless vorticity
defined by (12a);

transformed # co-ordinate defined by
(12c);

= 4/3, value of X at the rear stagnation
point;

value of X at the separation point ;
dimensionless distance defined by (10};
transformed y co-ordinate defined by
{12b).

Greek symbols

&

8

= A/pC,, thermal diffusivity;

= -0

boundary-layer thickness;

thickness of the internal wake;
tangential co-ordinate direction;

= u/p, kinematic viscosity ;

viscosity ;

density ;

stream function;

dimensionless stream function defined by
(25);

= (r? = R%/2)/r* cos* § = constant,
trajectories orthagonal to streamlines;
= constant, planes through the axis of
symmetry;

dimensionless time ;

thermal conductivity ;

dimensionless vorticity defined by (11);
value of ¢ at the bounding streamline
of the core;

vorticity.
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Subscripts

o. Hill’s vortex solution ;

{. perturbations

g. gas phase;

A liquid phase ;

1. thermal boundary layer and internal
thermal wake ;

0, initial value.

Superscripts

'

dimensionless quantities.

1. INTRODUCTION

THERE have been a number of studies, both theoretical
and experimental, of isolated droplet vaporization and
combustion with spherical symmetry in a stagnant
ambient gas [1]. These studies have provided useful
insights to the problem. However, the practical si-
tuation usually involves vaporization of droplets in a
convective gas stream. Some empirical correlations
exist [2- 4] which account for the convective motion in
the gas phase and express the vaporization rate as a
modification to the spherically symmetric case. These
correlations are not very satisfactory especially for
transient situations [5].

In many practical high pressure combustors, the
Reynolds number based upon relative gas—droplet
velocity is large [O(100}] compared to unity for a
significant part of the droplet lifetime [6]. This is
particularly so for larger droplets and for those in the
outer part of the liquid fuel spray where relative
gas—droplet velocity is larger. This high Reynolds
number in the gas phase has been demonstrated to
imply that the shear stress at the gas—liquid interface is
large enough to induce internal circulation (in the
absence of any surface-active impurities), with
Reynolds number large [O(100)] compared to unity,
in the liquid phase [6]. This liquid motion would
be important in heat and mass transfer (for multi-
component fuel droplets) within the droplet and
thereby modify the vaporization rate.

The theoretical prediction of vaporization rate,
taking into account the liquid phase convective mo-
tion, involves the solution of coupled equations of
motion, energy and concentration in the gas and liquid
phases. The coupling between the conservation equa-
tions in the two phases occurs at the gas-liquid
interface. The present paper deals with only the liquid
phase part of the overall problem which has been
uncoupled by providing the necessary conditions at
the gas—liquid interface. It is shown that the liquid
phase motion can be treated as quasi-steady and the
analysis for the motion has been conducted. Droplet
heating is shown to be unsteady and the relevant
energy equation is analyzed. The importance of liquid
motion for heat and mass transfer (for multicom-
ponent fuels) within the droplet is indicated. The
analysis outlined here can be extended to the coupled
problem of vaporization with some modifications. The
analysis is intended to provide useful insights to the
liquid phase processes.

The high Reynolds number flow induced within a
spherical droplet and gas bubble have been studied by
Chao [7. 8], Moore [9], and Harper and Moore [ 10].
Most of the studies on a liquid droplet, and in
particular, the theoretical study of Harper and Moore
[10] are concerned with the steady motion of a liquid
droplet in another liquid of comparable density and
viscosity. In their problem, the first approximation (o
the flow was an inviscid solution which for the droplet
interior was shown to be a Hill’s spherical vortex
whose strength was determined by requiring the
continuity of tangential velocity at the droplet surface.
The viscous boundary layer due to unmatched shear
stress at the interface was shown to perturb the velocity
field only slightly at high Reynolds numbers and
permitted the linearization of the boundary laver
equations. These equations were solved and a higher
order correction to the strength of the Hill's vortex was
determined. In the present problem of a liquid dropiet
motion in a convective gaseous environment, the
density and viscosity in the two phases are different by
orders of magnitude. Therefore an inviscid solution
cannot be used as a first approximation as was done in
[10]. For steady motion, it is shown following Bat-
chelor [ 11] that the droplet core motion is still a Hill’s
vortex for high Reynolds number flow. The approxi-
mate strength of the vortex is not the strength of the
inviscid solution and has to be determined. However, it
is still possible to linearize the boundary-layer equa-
tion by realizing that the velocity perturbation to the
Hill’s vortex field is smali even though the vorticity
perturbation is large.

Even though these important physical differences
exist. the mathematical analysis for the boundary
layer, turning regions near the stagnation points and
the internal wake near the axis of symmetry is
primarily based on the ideas by Harper and Moore
[10].

For droplet heating, the thermal boundary layer is
shown to be quasi-steady and the relevant energy
equation is determined. A procedure similar to the one
for viscous boundary layer is outlined for its solution.
By comparison of the relevant characteristic times, the
heating of the droplet core is shown to be modeled well
by a one-dimensional, unsteady energy equation in
streamline coordinates. The relation between the ther-
mal boundary layer and the thermal core is clearly
indicated. The mathematical equations and procedure
for the thermal core were discovered to be similar o
those used by Brignell [12] for his problem of solute
extraction from an internally circulating liquid drop.
although they were developed independently. On the
arguments that the boundary layer is thin and that the
diffusion in the core is the rate controlling process,
Brignell could solve the problem of mass transfer from
the droplet by neglecting the existence of the boundary
layer and solving the diffusion equation for the core.
He imposed the droplet surface concentration as the
boundary condition for the outer boundary of the core,
thus eliminating the coupling between the boundary
layer and the core without causing any significant
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errors in the mass-transfer problem. But in the present
problem of droplet vaporization, the fuel vapor con-
centration at the droplet surface depends exponen-
tially on the surface temperature which, therefore,
sensitively controls the vaporization rate. So such a
simplification as that of Brignell is not possible for the
present problem and the coupling between the thermal
boundary layer and the core is essential. This coupling
is clearly shown in this paper although the coupled
equations are not solved for the reasons stated in that
section. The diffusion equation for the core is solved for
the two cases where the normalized boundary con-
ditions are given for either (1) the temperature gradient
or (2) the temperature (this second case is the same as
in [12]). It is demonstrated in both cases that the
characteristic diffusion times are in fact reduced by an
order of magnitude due to the convective vortex
motion.

In Section II, the liquid droplet motion is con-
sidered. Section I1I deals with the energy equation and
droplet heating. Section I'V is devoted to the discussion
of the above analysis in the context of the coupled
problem of droplet vaporization in a convective
gaseous environment,

It should be understood that this paper does not
provide any final results which can be used directly on
the vaporizing fuel droplet problem. It only provides
an extension of the previous works in the context of the
present problem and a basis and direction for the
continued work on the overall vaporization problem.

2. DROPLET MOTION
There is an initial period during which the droplet
motion is unsteady and develops to a full vortex
strength. Also, for a vaporizing droplet, the change in
droplet radius will cause the droplet motion to change.
Characteristic time for a droplet to establish a steady
motion can be roughly estimated as follows:

— R2
Tvorticity diffusion = R /vb

which for a typical fuel (ethanol) droplet of radius
25pum at 298K is of the order of 0.4ms. Once the
vortex motion is started, the characteristic length scale
for the diffusion of vorticity is reduced to about one
third the droplet radius (for Hill’s vortex [ 13]) because
the vortex center is located nearer to the surface than
the center of the sphere. This reduces the characteristic
vorticity diffusion time by an order of magnitude to
about 40ps. A characteristic time of this order is
indicated by Savic’s [14] theoretical solution for low
Reynolds number flow to encompass the total mass
starting from rest.

The lifetime of a vaporizing droplet, a characteristic
time relevant for comparison with other characteristic
times, can be roughly estimated, by using empirical
correlation [ 3] for a vaporizing droplet in a convective
field, as follows:

tige = R2/k(1 +0.3Re2Pr17)

which is of the order of 2ms for a typical value of
evaporation constant k = 10”7 m?/s for a vaporizing
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droplet and Reynolds number based on the relative gas
velocity, Re = 100 and for the droplet radius of 25 um
as before.

From a comparison of the droplet lifetime and the
vorticity diffusion time, it can be concluded that the
droplet motion can be treated as quasi-steady because
the latter is smaller than the first by an order of
magnitude. In passing, it may be indicated that the gas
phase can also be treated as quasi-steady because the
characteristic time which is the residence time in the
boundary layer (R/U ) is of the order of 1ps for a
relative velocity of 25m/s, and is three orders of
magnitude smaller than the lifetime.

(A) Core motion

For high Reynolds number flow, the droplet core
motion away from the thin viscous boundary layer
near the droplet surface, is essentially inviscid. Follow-
ing Batchelor [11], it can be shown that the axisym-
metric steady state core motion in a confined domain
for an incompressible liquid is given by,

w/(rsin f) = constant.

'AXIS OF SYMMETRY

FiG. 1. Streamlines for the Hill's spherical vortex.

In the above, the spherical polar co-ordinate system is
used and w is the vorticity. In a spherical domain of the
droplet, the core motion is a Hill’s spherical vortex
[13] for which the stream function is given by (see Fig.
1),

Yo = —14r*(R? —r?)sin? 0, (1)

and
wo/(rsin@) = 5A4. (2)

The constant A4, used above, represents the strength of
the Hill’s vortex and has to be determined. 1t should be
emphasized again that in the Harper and Moore’s
problem [10] the strength could be determined to a
first approximation as an inviscid solution and A
= 3U . /(2R?) was known. This is the main difference
between [10] and this section of the present paper.

The components of the velocity vector for the Hill’s
vortex are,

4, = — A(R?—2r)sin 0, 3)
4., = A(R*—r?)cosf. @)

It should be noted that the characteristic velocity in the
liquid droplet is U, = O(AR?) and the characteristic
vorticity is of O(AR).
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(B) Liquid boundary-layer analysis

The techniques of the boundary-layer analysis are
similar, in principle, to the Harper and Moore's {10]
analysis. The boundary-layer velocity field is expressed
as a perturbation to the Hill’s vortex solution valid in
the core. Therefore in the boundary layer.

4 =4, tq,
W=,y (5)

o=,y \

YRl

Here the quantities with subscript “o” refer to the Hill's
vortex solution and with subscript “17 refer to the
perturbations. To match the boundary layer smoothly

it thin nasea ax ot
WILH LI COTC, wo regulic

g, =0
oy =0 } (6

at the inner edge of the boundary layer.

The steady-state continuity and momentum equa-
tion can be written for the boundary layer. The
continuity equation is,

Vg, =0 (7)
since the fluid is incompressible and g, satisfies V- ¢,
= 0. Taking curl of the momentum equation and

noting that §-Vq = V(G%/2)— 4 x (V X ¢), we can write
the momentum equation in the form.

v V23, +V x (g, < w, )+ Vg, x w,)
+V (g, xm) =0 (¥)

Here use has been made of the fact that the Hill's
vortex solution satisfies.

Vi, =0

o

and Vx(g,xwm,) =0

The momentum equation written above, in terms of
®;, 1s non-linear. However, it can be linearized by
making an order of magnitude estimate for the various
quantities involved. In the momentum equation, the
viscous terms will balance the inertia terms only
if the non-dimensional boundary-layer thickness
3 =0(Re ''2). Here o is non-dimensionalized with the
length scale R. Therefore, for large Reynolds number
in the liquid, ¢ <« | and, in the boundary layer, &/ér
= O(1/0). For a high Reynolds number flow in a
confined domain, the boundary layer is a region where
vorticity gradients are large compared to unity. It is
assumed, therefore, that the perturbation vorticity o,
when non-dimensionalized by (4R) is of the order of
unity, which is the same order as the Hill’s vorticity in
the core. This assumption will be examined a posreriori
when the strength of the Hill's vortex has been
determined. Therefore.

w2 o
o
¢, = 0.
and
g = 0(5?).

Primes, in the above, denote the non-dimensional

quantities and the welocity has been non-
dimensionalized with the characteristic velocity AR".

It is the recognition of the fact that the velocity
perturbation is small even though the vorticity per-
turbation is not small which allows us to extend the
Harper and Moore analysis into a parameter domain
well beyond that originally intended. An order of
magnitude estimate for each of the terms in cquation
{8) can now be made. Retaining terms of O(1), we can
write down the linearized momenium equation in the
axi-symmetric boundary laver.

IiatD) S T
VoL, = ART—rYycos 0
(& «r
5 , . . Cusy AR cost :
= AR —=2¢=)sin ) + - = U0 {9
Fe¢ I

Here, use has been made of the Hill's vortex solutior.
Now, the quantities in the above equation (9) are
non-dimensionalized. In particular, definc.
5 = 2/Re; = v AR, |
g. = AR*-5-u : 10y
R—r = Rov.
Define the non-dimensional vorticity as
o i

Q= = i1
AR hit Y
A further transformation (similar to the one in [10])
of the dependent and independent variables is made

below. Define,

. (9 )
1 (124}
s ff
Yo psint: 0o ¥ < v 112b)
X = hc0s30—gcos0+5; 0= X < X, =1 (12)

The momentum equation {9) now reduces to the well
known form of the diffusion equation.
Ly (3
cY- CX
Here Y = 0 corresponds to the droplet surface and
Y -» % to the edge of the boundary layer. Similarly X
= () corresponds to the front stagnation point region
and X = X, = % to the rear stagnation point region. It
should be indicated that the boundary-fayer equation
(13)is not valid near the front and the rear stagnation
point regions where some of the neglected terms in the
momentum equation are of the same order as the
retained terms and the boundary-layer approximation
is no longer valid. Boundary condition to the above
equation at Y = 0 is obtained by requiring continuity
of shear stress at the gas-liquid interface. Therefore,
) . . F(B)ysing
aty =0, W= 30 S
where F(0) is the shear stress distribution due to the
relative motion of the gas with respect to the droplet.
Here it is assumed that there are no surface-active
impurities present and that any forces due to surface
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tension gradient are negligible compared to the shear
stress. At the edge of the boundary layer we have,

2Q)asY—-x, W0

This condition is needed to match the solution
smoothly to the Hill’s vortex solution.

Another boundary condition is needed at some
value of = constant (or X = constant). Let us as-
sume that,

(3) at X = 0%, W =g(Y) (14a)

where g(Y )is some function of Y which is yet unknown
and will depend upon the overall flow pattern, near the
stagnation point regions and in the internal wake.
Note that the boundary condition has been applied at
some X, slightly away from the front stagnation point.

Some explanation is needed about the boundary
condition (1). In an actual situation of flow over a
sphere, the gas phase boundary layer will separate at
some value of 8 = 6. Let us say the corresponding
value of X is X,. From the separation point aft, up
until the rear stagnation point, there will be a very
small shear stress in the opposite direction due to
reverse flow in the separated region. In this paper it is
assumed that the shear stress is zero in the separated
region. Note that the separation point is moved aft
when the surface of the sphere is moving, as in this case,
compared to the case of a solid sphere. The shear stress
distribution at the droplet surface up until the point of
separation was taken for flow over a sphere [15, 16]
and expressed in the form given below.

F(0) = Cip U, f(O)R; 0 <8<,

=0; 6, <0<m, (14b)

where C, is a constant and f(f) is some other function
of . Now the boundary condition (1) at Y = O can be
expressed in terms of X as below.

U,
AtY =0, W= —3’+A—R%(ao+alx+azX2
+(13X3);
0<X <X,

=-3; Xo<X<X, (l4c)

Here the constants ag,q,...etc. are obtained by a
polynomial fit of the quantity [ C, - (u,/u;) (f (0)/sin 6)]
in terms of X.

For simplification we define,

U
Ki=-r3, (15)
which is the ratio of the characteristic velocity in the
gas (the free stream velocity) to the characteristic
velocity in the liquid.

The solution of the diffusion equation (13) subject to
the above boundary conditions can now be written as

>
0

1
W= Jo
—exp(—(Y + Y’)2/4X)] dY' —3¢.(X,Y)
+K1¢b(X’ Y)9

g(Y")[exp(— (Y = Y")*/4X)

(16)
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where ¢, (X, Y) = erfc(Y/2X"?)and $,(X, Y)is a long
function involving integrals of complementary error
functions and is given in Appendix A.

In the above solution g(Y) and K, are still un-
knowns. This is similar to equation (3.20)in [10] where
y(Y) and C are the unknowns. However, here K,
represents the full vortex strength while C represents
only the perturbation to the vortex strength. To
determine these unknowns, an approach similar to the
one in [ 10] was taken in which a condition in the form
of an integral equation is obtained. To deduce this
condition the flow pattern near the rear stagnation
point, where the flow turns and enters the internal
wake, and in the internal wake (see Fig. 2) should be
analyzed.

BOUNDARY LAYER

HILL'S SPHERIC
VORTEX

8 124 4

AX|S OF SYMMETRY

TURNING
REGION

16:

WAKE

c

Fi1G. 2. Schematic diagram of the liquid droplet motion with
viscous boundary layer, core and internal wake.

An order of magnitude analysis for the rear stag-
nation point region was made by Moore [9] and used
by Harper and Moore [10]. A similar analysis for the
magnitude of the terms in the exact equation of motion
given by equation (8) estimated according to the
boundary-layer approximation produced the same
conclusion as in [10]. Results of this analysis are
reproduced here for the sake of completeness. From
this order of magnitude analysis it can be shown that
the turning region near the rear stagnation point is of
size O(8') or O(Re™ /%), Also the perturbation vor-
ticity in this region is O(f) or O(Re™'/®), where f ==
—0, and therefore the perturbation velocity is
O(Re™ '7*). The velocity of the Hill’s vortex solution in
this region is O(f) or O(Re~!/%). Therefore, the per-
turbation velocity is smaller than the Hill’s vortex
velocities by a factor of O(Re™ V%). Thus the stream-
lines are only slightly perturbed for the Hill’s vortex
solution and the assumption ¥ = i, in this region is
correct to a first order approximation. Also the viscous
forces are O(B°) or O(Re™%°) as compared to the
inertia forces which are O(8) or O(Re™ /), Therefore it
is assumed that the flow is inviscid and that the
perturbation vorticity is convected without sensible
diffusion in this region.

Similarly it can be shown from the continuity of
mass that the size of the internal wake is,

5, = 0(5Y2).
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Again from the order of magnitude analysis, it can be
shown that the viscous terms in the internal wake are
negligible compared to the inertia terms and that the
wake is effectively inviscid.

The above arguments imply as mentioned in [ 10].
that the vorticity which is convected passively without
diffusion in the region near the rear stagnation point
and through the internal wake will turn near the front
stagnation point and re-enter the boundary layer.
However, it should be noted from the boundary
condition given by equation {l4c) that there is a
discontinuity in W at Y = 0 near the front stagnation
point (X = 0) since a, % 0in general and this discon-
tinuity will smoothen as the vorticity diffuses in the
boundary layer. In Harper and Moore’s problem such
a discontinuity did not exist because the shear stress at
the interface in their problem was symmetrical with
respect to 0 = /2. which is not so in our case. The
above condition is used to determine the unknown
function g(Y) and K, in equation (16). Mathemati-
cally this condition is,

WO, Y) = W(XI,Y)=g(Y). (17}

This condition when substituted in equation (16)
leads to an integral equation similar to equation (3.23)
in [10]. Therefore.

v

l P re rr -
X jﬁ gUYIK(Y, Y)Y =3¢, (X,. Y)
+K X, Yy=glY) (18)
where

K(Y. Y)=exp[ — (Y~ Y')/4X, ] —exp[ =¥
L YRAX,]

This equation is subjected to the restriction that g(Y
— )= {.

This integral equation was solved by a numerical
procedure given in Appendix B and the function g(Y')
and constant K, which represents the strength of the
Hill’s vortex was determined.

It was found that the value of K, 1s,

v
S 0(4-10).
qrz = 0W10)

The value of K, was found to be between 4 and 10
depending upon the stress imposed and the liquid
viscosity chosen. The important point to note is that a
similar ratio of the free stream velocity with respect to
the droplet to the characteristic velocity in the liquid,
that is, U, /AR? is of the order of one for the Harper
and Moore’s [10] problem, or a difference of about an
order of magnitude from our value. The reason for this
is that the density and viscosity of the free stream fluid
and the droplet in their problem are of the same order
which is not so in our problem,

Once g(Y) and K, are known, the solution in the
boundary layer can be determined using equations
(16) and (11).

Now we would like to examine whether v, is in fact
of the order of one in the boundary layer, as was
assumed for the analysis. For this purpose we would
like to estimate the value of w, at the droplet surface.

Ky =

The shear stress at the surface of a sphere can be
expressed as.

shear stress = O(Rel?p, L sin /R

Now the continuity of shear stress at the gas- liquid
interface would require,

“dn,

o

= —3sin O+ O[Re} e, )il AR ysin ],

D

Here primes denote the non-dimensional quantities
and AR? is used to non-dimensionalize velocity.

The quantity on the LHS of the equation is just ¢ at
the interface. In the second term on the RHS, Re, is of
the order of 200, 11,/ 1s typically of the order of 1:30
and for a conservative value of L' ‘4R? as 10, this
term is of O(5sin#). Therefore,

ey = (1),

and the linearization of the momentum equation and
the following analysis is self-consistent.

3. ENERGY EQUATION

Since the Prandtl number in the hquid is typically of
0(10-20), the Peclet number based on the liquid
droplet motion considered above is. Pey = O(1000).
With this high Peclet number in the liquid, we would
expect a thin thermal boundary layer near the droplet
surface. The thickness of the thermal layer s, &,
= O(Pe; 12,

Ongce the strength of the Hill’s vortex 1s known, the
characteristic residence time along a closed streamline
can be estimated. For a droplet of diameter 50 pm aund
free stream relative gas velocity of 25 m;/s which gives a
characteristic liquid velocity of 2.5 m/s, this time 15,

Tresidence ulong a closed streambioe ™ O( D Ili = 0(20 HE i

Similarly the thermal diffusion time for the fuel
{ethanol} droplet of 25um radius at 298K can be
estimated.

R,

Tihermal diffusion =

This is of the order of 10ms in the absence of any
vortex motion. In the presence of convective vortex
motion, this characteristic thermal diffusion time will
reduce by an order of magnitude to about I ms for the
same reasons as discussed in Section 2 with regard to
the vorticity diffusion time.

The droplet lifetime as calculated in Section 2 is of
the order of 2ms which is comparable to the thermal
diffusion time. Therefore, the droplet heating will be
essentially unsteady. Also since the residence time
along a closed streamline which is also the residence
time in the thermal boundary layer is about two orders
of magnitude smaller than the thermal diffusion time,
the thermal boundary layer is essentially quasi-steady.
This short residence time along a closed streamline
also implies that in the thermal core away from the
boundary layer, the temperature variation normal to
the streamline will be important. The temperature
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variation along any streamline will uniformize and an
average value over a closed streamline is used. This
would simplify the energy equation in the core where
the unsteady one-dimensional energy equation in
streamline co-ordinates can be used as was done by
Brignell [12] for his solute extraction problem.
Coupling between the thermal boundary layer and
the core is achieved by requiring the continuity of the
gradient of the average temperature normal to the
outer streamline for the core.

(A) Thermal boundary layer
The steady state energy equation for the incom-
pressible fluid can be written as follows:

q-VT = 4, VT. (19)

In the above, «, is assumed to be independent of
temperature.

In the above equation, the various quantities are
non-dimensionalized similar to the vorticity equation.
In particular, we define

T-T(1)

R.p. - TE)
where T,(t) is the average temperature at the outer
boundary of the core (or the average temperature at
the boundary streamsurface) and is a function of time.
Here, the boiling point of the liquid is chosen for non-
dimensionalization because it is a constant upper
bound for the surface temperature. Further define,

8% = 1/Pe; = a,/(AR?)
R—r = Rd,y,

T

retaining terms of O(1) in the equation (19), the
following form of the energy equation is obtained.
orT éoTr . 0T
oy + 2y,cosﬂa—); - sm(-)gé = 0.
Here, primes for the non-dimensional temperature
have been deleted for convenience.

Transforming the independent variables 6 and y, to
X, and Y, as was given for the viscous boundary layer
by equations (12b) and (12¢), we get the well known
form of the diffusion equation given below.

P*T 2T
éy? o ex,

(20)

21

The boundary conditions for this equation are similar
to that for the viscous boundary layer. They are,

oT
t ¥,=0, =
at Y=0 o J(X,0) (21a)
oT

Here f(X,) is the temperature gradient along the
droplet surface and is obtained by coupling with the
gas phase boundary-layer solution. This represents the
heat flux entering the droplet from the gas side and can
be estimated in similar fashion to the shear stress when
the droplet is not sufficiently heated and the vapori-
zation rate is small. Note that the heat flux will be time

dependent for the vaporization problem due to the
temporal variation of surface temperature and thus the
vaporization rate. The parameter C, is related to the
average temperature gradient normal to the streamline
at the bounding streamline for the core region and will,
similarly, be time dependent for the vaporization
problem.
If we define,

then equation (21) and the boundary conditions given
above and valid at any instant, can be written as,

*v v

- 2
ay? ~ ox, 22)

at ¥, =0, V=f(X)-C, (22a)
at Y,—»o, V=0 (22b)

Another boundary condition at some value of X, is
needed to solve equation (22). Let,

at X, =0% V=h). (22c)

Here h(Y,)is a function similar to g(Y)in Section 2 and
has to be determined.

Using arguments similar to that for «, it can be
shown that in the turning region near the rear
stagnation point and in the internal wake, there is
negligible diffusion of heat and that the temperature
gradient V is convected without diffusion through this
region to re-enter the thermal boundary layer. This
condition leads to an equation similar to (17).

V(0,Y) = h(Y) = V(X,, Y)). (23)

The condition given by equation (23) along with the
differential equation (22) with boundary conditions
(22a)and (22b) imply that the integral of f (X,) over the
droplet surface which represents the total heat flux into
the droplet will equal the heat flux across the portion of
the bounding streamsurface near the droplet surface
on which a constant average temperature gradient
exists. We thereby assume that the flux of heat from the
part of the bounding streamsurface along the internal
wake is small compared to the total heat flux which is
true because of the small fraction of the surface area for
this part of the streamsurface. Thus the value of C,
could be determined if f (X,) is known. That is,

1 X
Cl = X—e JO f(Xt)dXt'

The condition given by equation (23) will lead to an
integral equation for 4(Y,) similar to the one given by
equation (18). This integral equation subject to the
condition h(Y, — o) = 0, can be solved and h(Y,) and
C, determined similar to the way g(Y) and K, were
determined. Once these quantities are known, solution
in the thermal boundary layer can be determined.

(B) Thermal core
Mathematical analysis for the core is similar to that
in [12] except for the difference in nomenclature.
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The unsteady energy equation valid in the core is,
oT ) R

" +q- VT =2, V-T. (24)
¢
Because of the short residence time along a closed
streamline compared to the thermal diffusion time, this
equationisintegrated along a closed streamline and an

average temperature on that streamline is defined as,

We further define the non-dimensional quantities as
follows.

¢ = — 8/ (AR*) = 4p*(1 —p*)sin? 0
AR [ h. .
gulg) == P=ds L (25)
G
8 h, B}
(12((/)) ARS’ j IZ<d5,

Here subscript “o” has been dropped for the Hill’s
vortex solution and the various terms used have been

defined in the nomenclature. We further non-
dimensionalize temperature and time as follows:
T = 5!,“2, L
Tb.p. — 4o
= 1/R"

Now equation (24) can be written in streamline co-
ordinates, deleting primes for non-dimensional tem-
perature and time as,
cr ¢
Tt gi@) i
This equation is identical to equation (16) in [12]. We.
have the initial condition,

cT
[gzwni— ’ (26)
qon

t=0 T=0, (26a)

(1) at

since the core is initially at T;,.

The boundary ¢ = ¢, corresponds to the outer
boundary of the core near the droplet surface. Its value
can be estimated from the thermal boundary layer
thickness. It was found that ¢, = 0.16. We have the
following boundary condition at this end.
b = ¢, (ﬂ[ =C,.

)

(2} at (26b)
where C, is a constant obviously related to €', used in
equation (21b). The boundary condition at the center
of the vortex is obtained by assuming that T is a
regular function of ¢ at this point. Thus the condition
obtained is,

cT 1 cT
$=1 \gm dé J o P
This condition is identical to equation (18) in | [2].
Since equation (26) and the boundary conditions are
linear, the solution to the above problem can be

obtained by solving the problem with normalized

0t

(3) at
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boundary condition at ¢ = ¢,

In addition to the gradient boundary condition, the
above equation was also solved for T =1 at ¢ = ¢,.
which is relevant when the surface temperature has
reached a value close to the boiling point and the
droplet core is still heating. The results of the above
solution are similar to the results shown in Fig. 5 of
[12]. These solutions were obtained primarily to
demonstrate that the thermal diffusion time is signi-
ficantly reduced by about an order ol magnitude
because of the vortex motion.

The main difference between this problem and the
Brignell’s [ 12] problem is in the coupling between the
thermal core and the boundary layer in this problem.
Brignell could neglect the existence of the con-
centration boundary layer without causing any signi-
ficant error in the mass-transfer problem. Although the
temperature change across the thermal layer is of
O(Pe, '?) (in the non-dimensional sense) and the
neglect of the thermal layer would cause only a small
error of the same order in determining the temperature
field in the core, such a coupling is essential in our
ultimate problem because the fuel vapor fraction and
hence the vaporization rate, which in turn determines
the heat flux, depends exponentially on the surface
temperature.

To determine the relation between € and €, and
thus the coupling between the core and the thermal
boundary layer, we have in the thermal layer,

Y= —SArH R~ sint 0,
therefore
W x — AR*S, ), sin" 0.

Using the definitions of d,, y, and Y, and taking into
account the area ratio of the bounding streamsurface
to its part along the interface, we find,

oT .
e — C, = — AR%,
(‘Y'! Y, x
¢ .
X | = l (] +0 »1u,"R)'
(wlI/ at the core boundary »
Therefore,
C, = 8,051+, /R)
where

3, /R = O(Pe, ! *).

It will be more meaningful to solve the coupled
quasi-steady thermal boundary layer equation and the
unsteady core equation, when the gas phase coupling is
done and the vaporization is taken into account
because as the core gets heated, the droplet surface
temperature will rise resulting in an increased vapori-
zation rate and therefore a decrease in heat flux into
the core.

4. RESULTS AND DISCUSSION
The diffusion equation (26) was solved numerically
for the normalized boundary condition at the end ¢
= ¢po- The results for the case of given temperature
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FiG. 3. Average temperature on a closed streamline as a
function of ¢ at various instants when [07/8¢],...,, = 1.

gradient at the boundary and for the case of given
temperature at the boundary are shown in Figs. 3 and
4 respectivély. For the first case, a steady-state solution
does not exist and the temperature keeps rising,
approaching a linear profile. In reality, of course, the
surface temperature cannot exceed the boiling point of
the liquid so that temperature gradient at the surface
would eventually decrease with time. For the latter
case, it can be seen from Fig. 4 that for z = 0.09, the
interior is heated to about 929 of the boundary value.
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using Harper and Moore’s approach which was pri-
marily developed for a droplet motion in a fluid of
comparable density and viscosity. It is found that the
droplet motion is still a Hill’s vortex whose strength is
different by about an order of magnitude from the
Harper and Moore vortex and that a thin boundary
layer near the droplet surface exists. The same ap-
proach for the droplet motion can be used in the
presence of vaporization when the gas phase boundary
layer is coupled. Although in that case continuity of
tangential velocity will be required in addition to the
continuity of shear stress at the interface which will
necessitate an iterative solution of the gas—liquid
boundary layers. The quasi-steady assumption for the
liquid motion will still hold although the change in
droplet radius with time will have to be taken into
account.

Because of a short residence time along a closed
streamline in the core for vortex strength in the range
of interest, the above analysis shows that the heating
time of the core will be independent of the strength of
the vortex and hence the motion generated inside the
droplet. Thermal diffusion will be essentially normal to
the streamlines. The vaporization rate and the heating
of the core are coupled through the thermal boundary
layer which determines the surface temperature and
therefore the vaporization rate and consequently the
heat flux into the core. In the gas—liquid coupled
problem with vaporization, the energy equation in the
thermal core has to be modified to take into account
the temporal variation of  and the radius of the
droplet. But the averaging process along a stream
surface will still hold for the same reasons as here.

T =0.0936

0.8}

0.6

T, TEMPERATURE

0.2t

—————
7=0.0624

T= %% =0.0312

r=0.00312

0
0.16 024 032 040 048 056 084 072 080 088 096

#

FiG. 4. Ayerage temperature on a closed streamline as a
function of ¢ at various instants when [T],,.,, = 1.

This implies that it takes about 10% of the characteris-
tic thermal diffusion time (R?/a,), for the droplet to be
fully heated in the presence of convective motion. This
was mentioned earlier on physical grounds. Similarly,
it can be observed from Fig. 3 that in about 5% of the
characteristic time (R?/w)), the temperature profile
becomes almost linear.

In the present paper, the motion generated inside a
droplet in a gaseous environment has been studied

In the droplet vaporization problem with convective
field, it is seen that the unsteady effects will persist due
to droplet heating for the major part of the droplet
lifetime even though the internal circulation will
significantly enhance the heating as shown in this
paper. The rapid mixing or uniform temperature
assumption therefore does not lead to an accurate
prediction of either the temporal or spatial dependence
of temperature.
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APPENDIX A

The function ¢,{ X, Y )is a solution of the diffusion equation
corresponding to the second part of the boundary condition
at Y =0, that is, (ag+a,X +a,X*+a,X?) and is given as
follows:

Dol X V) = agerfe[ YA 2X ) [ = da Niterie] Y (247
# 320, X Perfe[YA2X 4y
+3day X Cerfe] Yoo 2
FHIX = N herle] 2oy
PAb X = Xiterie] Y Dy N
FA2D05(X - N rtere] Yoo

FARAA X - X Vel y 2y

1 Vo

Here H(X — X)) is the Heaviside step function which s
zerofor X < X, and equal to one for X = X,,. The functions
i, i3 0*. el are integrals of complementary error functions
defined elsewhere [ [7]. The constants by, b,
10 dg. dy ... eteas follows,

ctecare refated

ho = —ldap+a, Ny va, X0 - a 30

by = = {d+ 2 X 3, V) .
ho= as + 3ay X0 o
hyo= ey

The function ¢,(X.Y) could also be caleulated numeri-
cally. This may be necessary if a good polynomial tit without
many terms is not possible.

APPENDIX B

Equation (18) was solved by a procedure similar to that in
[10]. We write

guY) = 3g,(Y)- K g1
and require that g,(Y) must satish
1 T

AnX )P,

iBh)

GAYIKIY Y dY =g, iY) = Y1 1B2)
and a similar equation for ¢,{Y) with b replaced by « The
above two integral equations are equivalent to the original
equation (18). The solutions of the above two equations are
rendered unique by requiring that ¢, (Y) and gAY) have a
finite limit as Y -» =«

Equation (B2) was solved 1terattvely. An itial guess.
go(Y ), for g, (¥ ) was made at equally spaced intervals of ¥ and
the integral was evaluated numerically using Simpsort’s rulc.
Thus a new set of values ¢, (Y }is obtained from equation (B2},
A new guess. ¢,(Y ), for ¢ (V) is obtained by combining the old
set of values and the new set linearty. Thus.

GAY Y= (L +kg Yy - Ayt Y

This process is repeated by replacing g, (Y1 by g} 1in the
integral until convergence is obtained. Value of &, « constant,
is chosen to get the fastest convergence. The best value was
found to be about 0.6.

Once g (Y ) and g,(Y) are known, & , is determined from
the condition gt ¥ - =« ) = 0. Therefore.

Ky = 3g,00 gl

CHAUFFAGE D'UNE GOUTTE LIQUIDE COMBUSTIBLE
AVEC UNE CIRCULATION INTERNE

Résumé-—On étudie la circulation interne d’une goutte liquide en déplacement dans un gaz pour des
paramétres caractérisant un mélange dispersé air-combustible dans un cas typique. L'analyse montre un
mouvement axisymétrique et quasi-statique du liquide avec un tourbillon spherique central entouré par unc
couche limite visqueuse et un sillage interne. L’intensité du tourbillon est déterminé en liaison avec la tenston
de cisaillement sur la surface de la goutte. De plus lanalyse indique que le chauffage de la goutte est variable
durant sa durée de vie. La circulation interne rend effectivement monodimensionnelle la conduction
thermique dans e noyau liquide. La couche limite thermique prés de la surface est étudiée et on monire que le
champ de température dans la goutte peut étre déterminé a partir de la contrainte a Pinterface gaz-liquide.
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HEIZUNG MITTELS FLUSSIGER OLTROPFCHEN MIT INNERER STROMUNG

Zusammenfassung—Die innere Strémung eines fliissigen Tropfchens, das sich durch ein Gas bewegt, wird in
einem Parameterbereich analysiert, der fiir cin brennendes Luft-Brennstoff-Gemisch in einer typischen
Brennkammer maBgebend ist. Die Analyse zeigt eine axisymmetrische quasistationdre Fliissigkeitsbe-
wegung mit einem sphirischen Kernwirbel, der durch eine zihe Grenzschicht und eine Wirbelschleppe
umgeben ist. Die Wirbelstirke wird als eine Funktion der Schubspannung iiber der Oberfliiche des
Tropfchens berechnet. AuBerdem zeigt die Analyse, daBl die Erwiirmung des Trépfchens wihrend der Zeit
seines Auftretens instabil ist. Es zeigt sich, daf} dic innere Strémung den Wirmetransport durch Leitung im
Fliissigkeitskern wirkungsvoll in eine Richtung flieBen l145t. Die thermische Grenzschicht in der Nihe der
Oberfliche wird ebenfalls analysiert, und es wird gezeigt, dafl das Temperaturfeld des Tropfchens durch die
Angabe der Gas-Fliissigkeit-Grenzbedingungen berechnet werden kann.

HAT'PEB KAIUIM XWUAKOI'O TOIVINBA IPU HAJIMMUM BHYTPEHHEN
LHUPKY ALY

Aunoraunst — AHanM3 BHYTPEHHEH LIMPKYNALMH KaIUsiH XHAKOCTH, NPOXONSILEH vepes ra3, mpo-
BOJMTCA B AMANA30HE MApaMeTPOB, XapaKTepHBIX AS I'OPEHHs CMECH PaclblICHHOTO TOMIMBA C
BO3AYXOM B THIOMYHOH KaMepe CropaHHs. B pesynbTare aHA/IM3a BbISBNEHO OCECHMMETPHYHOE
KBA3MCTAUKOHAPDHOE TEYECHHE XMOKOCTH, B KOTOPOM MMEET MECTO CHEpMiECKOe BHXPEBOE SApO,
OKDYXCHHOE BA3KEM TIOTPAHHYHBIM C/IOEM H BHYTPEHHMM CnefoM. MHTEHCHBHOCTH BHXpH onpe-
Hensiercs Kax GYHKOUA KacaTeNbHOTO HaNPHKCHHS HA TIOBEPXHOCTH kaniu. KpoMe Tore BhisicHeHO,
YTO HAIPEB KAIUIH ABJIAETCA HECTALMOHAPHLIM 32 BPEMs! XKH3HM Kannu, [1oka3aHo, YTO BHYTPEHHAS
HHPKYASUMA BEAET X OAHOMEPHOCTH TEMIONPOBOJHOCTH B snpe. Taxke aHANMIUPYeTCA TeIoBoi
TIOTPaHMYHBIH CNOH y NMOBEPXHOCTH KAIUIM M MOKa3aHO, YTO TEMIEPATYPHOE NOJE KAl MOXET
ObITH ONpPENENEHO, €C/IH H3BECTHBI YCIOBHS HA I'DAHULE Pasiena ra3-KuaKocTs.
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