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Altstrac&-The internal circulation of a liquid droplet moving through a gas is analyzed in a parameter range 
relevant for a burning air-fuel spray mixture in a typical combustor. The anafysis indicates axis~metric 
quasi-steady liquid motion with a spherical core vortex sn~ounded by a viscous boundary layer and an 
internal wake. The vortex strength is determined as a function of the shear stress along the droplet surface. 
Furthermore, analysis indicates that the droplet heating is unsteady during its lifetime. The internal 
circulation is shown to one-dimensionalize effectively the heat conduction in the liquid core. The therma 
boundary layer near the surface is also analyzed and it is shown that the droplet temperature field may be 

determined given the gas-liquid interface constraint. 

ao-a3, constants used in boundary condition (14c); 

4 strength of the Hill’s vortex as used in (2); 
&-b,, constants reiated to a,-- u3, given 

by (A2); 
fl, constant used in @lb); 

c,* constant used in (26b); 

c,, specific heat at constant pressure; 
Q diameter of the droplet ; 
f”(@, related to F(3) by (14b); 
F(e), shear stress distribution at the interface; 
g(Y), an unknown function of Y as used in (14a); 
St($), gz(4), dimensionless function of # 

defined by (25); 
= Ar’ CQS’ 8/2q,, scale factor in 
streamwise direction ; 
= l/(r sin @ql), scale factor Norman to 
streamline in an azimuthal plane; 
= r sin B, scale factor in azimuthal 
direction; 
= U,/AR’, ratio of characteristic velocity 
in gas to that in Iiquid ; 

= r/R, dimensionIess distance; 
Peclet number ; 
Prandtt number; 
velocity vector; 
velocity in streamwise direction ; 
radial distance in spherical polar 
co-ordinate system ; 
radius of droplet ; 
Reynofds number ; 
time ; 
temperature ; 
initial temperature ; 
boiiing point of liquid ; 
dimensionless velocity defined by (10); 
free stream gas velocity relative to 
droplet; 
= AR2, characteristic liquid velocity; 

variable defined in the thermal 
boundary layer ; 
transformed dimensionless vorticity 
defined by (12a); 
transformed 8 co-ordinate defined by 
(12c); 
= 4/3, value of X at the rear stagnation 
point; 
value ofX at the separation point; 
dimensionless distance defined by (IO); 
transformed y co-ordinate defined by 
(12bf. 

Greek symbols 

= A/&,, thermal d~ff~s~vity ; 
=x--o; 
boundary-layer thickness; 
thickness of the internal wake; 
tangentiai co-ordinate direction; 
= p/p, kinematic viscosity; 
viscosity ; 
density ; 
stream function ; 
dimensionless stream function defined by 
(W; 
= (? - R2j2)/r4 cos4 fI = constant, 
trajectories orthagonal to streamlines; 
= constant, planes through the axis of 
symmetry; 
dimensionless time ; 
thermat conductivity ; 
dimensionless vorticity defined by (11); 
value of 4 at the bounding streamline 
of the core ; 
vorticity. 
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Subscripts 

0. 

1. 
61. 
I. 
I. 

0. 

Hill’s vortex solution ; 
perturbations ; 
gas phase : 
liquid phase : 
thermal boundary layer and internal 
thermal wake; 
initial value, 

Superscripts 

dimensionless quantities. 

1. INTRODUCTION 

THERE have been a number ofstudies, both theoretical 

and experimental, of isolated droplet vaporization and 
combustion with spherical symmetry in a stagnant 

ambient gas [l]. These studies have provided useful 
insights to the problem. However, the practical si- 
tuation usually involves vaporization of droplets in a 

convective gas stream. Some empirical correlations 
exist [ 2 41 which account for the convective motion in 

the gas phase and express the vaporization rate as a 
modification to the spherically symmetric case. These 
correlations are not very satisfactory especially for 
transient situations [5]. 

In many practical high pressure combustors, the 

Reynolds number based upon relative gas-droplet 

velocity is large [O(lOO)] compared to unity for a 
significant part of the droplet lifetime [6]. This is 
particularly so for larger droplets and for those in the 

outer part of the liquid fuel spray where relative 
gassdroplet velocity is larger. This high Reynolds 
number in the gas phase has been demonstrated to 

imply that the shear stress at the gas-liquid interface is 
large enough to induce internal circulation (in the 
absence of any surface-active impurities), with 

Reynolds number large [O(lOO)] compared to unity, 
in the liquid phase [6]. This liquid motion would 

be important in heat and mass transfer (for multi- 
component fuel droplets) within the droplet and 

thereby modify the vaporization rate. 
The theoretical prediction of vaporization rate, 

taking into account the liquid phase convective mo- 
tion. involves the solution of coupled equations of 
motion. energy and concentration in the gas and liquid 
phases. The coupling between the conservation equa- 
tions in the two phases occurs at the gas-liquid 
interface. The present paper deals with only the liquid 
phase part of the overall problem which has been 
uncoupled by providing the necessary conditions at 
the gas-liquid interface. It is shown that the liquid 
phase motion can be treated as quasi-steady and the 
analysis for the motion has been conducted. Droplet 
heating is shown to be unsteady and the relevant 
energy equation is analyzed. The importance of liquid 
motion for heat and mass transfer (for multicom- 
ponent fuels) within the droplet is indicated. The 
analysis outlined here can be extended to the coupled 
problem of vaporization with some modifications. The 
analysis is intended to provide useful insights to the 
liquid phase processes. 

The high Reynolds number tlow induced within ;I 
spherical droplet and gas bubble have been studied by 
Chao 17.81, Moore [9], and Harper and Moore [lOj 
Most of the studies on a liquid droplet. and in 

particular, the theoretical study of Harper and Moore 

[IO] are concerned with the steady motion of a liquid 
droplet in another liquid of comparable density and 
viscosity. In their problem, the first approximatioir :o 

the flow was an inviscid solution which for the droplet 
interior was shown to be a Hill’s spherical vortex 

whose strength was determined by requiring (he 
continuity of tangential velocity at the droplet surface. 

The viscous boundary layer due to unmatched rhedr 
stress at the interface was shown to perturb the velocity 
field only slightly at high Reynolds numbers and 

permitted the linearization of the boundary iayer 
equations. These equations were solved and a higher 

order correction to the strength of the Hill’s vortex was 
determined. In the present probiem of a liquid droplet 
motion in a convective gaseous environment. the 

density and viscosity in the two phases are different b> 
orders of magnitude. Therefore an inviscid solution 
cannot be used as a first approximation as was done in 
[lo]. For steady motion. it is shown following Bat- 
chelor [l l] that the droplet core motion is still a Hill’s 
vortex for high Reynolds number flow. The approxi- 

mate strength of the vortex is not the strength of the 

inviscid solution and has to be determined. However. rt 

is still possible to linearize the boundary-layer equa- 

tion by realizing that the velocity perturbation to the 
Hill’s vortex field is small even though the I orticiry 

perturbation is large. 
Even though these important physical differences 

exist. the mathematical analysis for the boundary 
layer. turning regions near the stagnation points and 
the internal wake near the axis of symmetry is 
primarily based on the ideas by Harper and Moore 

PO1 
For droplet heating, the thermal boundary layer is 

shown to be quasi-steady and the relevant energy 

equation is determined. A procedure similar to the one 
for viscous boundary layer is outlined for its solution. 
By comparison of the relevant characteristic times. the 
heating of the droplet core is shown to be modeled well 
by a one-dimensional, unsteady energy equation in 
streamline coordinates. The relation between the ther- 
mal boundary layer and the thermal core is clearly 
indicated. The mathematical equations and procedure 
for the thermal core were discovered to be similar to 
those used by Brignell [12] for his problem of solute 
extraction from an internally circulating liquid drop. 
although they were developed independently. On the 
arguments that the boundary layer is thin and that the 
diffusion in the core is the rate controlling process. 
Brignell could solve the problem of mass transfer from 
the droplet by neglecting the existence of the boundary 
layer and solving the diffusion equation for the core. 
He imposed the droplet surface concentration as the 
boundary condition for the outer boundary of the core. 
thus eliminating the coupling between the boundary 
layer and the core without causing any significant 
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errors in the mass-transfer problem. But in the present 
problem of droplet vaporization, the fuel vapor con- 
centration at the droplet surface depends exponen- 
tially on the surface temperature which, therefore, 
sensitively controls the vaporization rate. So such a 
simplification as that of Brignell is not possible for the 
present problem and the coupling between the thermal 
boundary layer and the core is essential. This coupling 
is clearly shown in this paper although the coupled 
equations are not solved for the reasons stated in that 
section. The diffusion equation for the core is solved for 
the two cases where the normalized boundary con- 
ditions are given for either (1) the temperature gradient 
or (2) the temperature (this second case is the same as 
in [12]). It is demonstrated in both cases that the 
characteristic diffusion times are in fact reduced by an 
order of magnitude due to the convective vortex 
motion. 

In Section II, the liquid droplet motion is con- 
sidered. Section III deals with the energy equation and 
droplet heating. Section IV is devoted to the discussion 
of the above analysis in the context of the coupled 
problem of droplet vaporization in a convective 
gaseous environment. 

It should be understood that this paper does not 
provide any final results which can be used directly on 
the vaporizing fuel droplet problem. It only provides 
an extension of the previous works in the context of the 
present problem and a basis and direction for the 
continued work on the overall vaporization problem. 

2. DROPLET MOTION 

There is an initial period during which the droplet 
motion is unsteady and develops to a full vortex 
strength. Also, for a vaporizing droplet, the change in 
droplet radius will cause the droplet motion to change. 
Characteristic time for a droplet to establish a steady 
motion can be roughly estimated as follows: 

7vortiaty diffusmn = R2/v,t 

which for a typical fuel (ethanol) droplet of radius 
25 pm at 298 K is of the order of 0.4ms. Once the 
vortex motion is started, the characteristic length scale 
for the diffusion of vorticity is reduced to about one 
third the droplet radius (for Hill’s vortex [13]) because 
the vortex center is located nearer to the surface than 
the center of the sphere. This reduces the characteristic 
vorticity diffusion time by an order of magnitude to 
about 40~s. A characteristic time of this order is 
indicated by Savic’s [14] theoretical solution for low 
Reynolds number flow to encompass the total mass 
starting from rest. 

The lifetime of a vaporizing droplet, a characteristic 
time relevant for comparison with other characteristic 
times, can be roughly estimated, by using empirical 
correlation [3] for a vaporizing droplet in a convective 
field, as follows : 

Tlife = R’/k(l +0.3Re”2Pr1’3) 

which is of the order of 2ms for a typical value of 
evaporation constant k = lo-’ m2/s for a vaporizing 

droplet and Reynolds number based on the relative gas 
velocity, Re = 100 and for the droplet radius of 25 pm 
as before. 

From a comparison of the droplet lifetime and the 
vorticity diffusion time, it can be concluded that the 
droplet motion can be treated as quasi-steady because 
the latter is smaller than the first by an order of 
magnitude. In passing, it may be indicated that the gas 
phase can also be treated as quasi-steady because the 
characteristic time which is the residence time in the 
boundary layer (R/U,) is of the order of 1 ps for a 
relative velocity of 25m/s, and is three orders of 
magnitude smaller than the lifetime. 

(A) Core motion 
For high Reynolds number flow, the droplet core 

motion away from the thin viscous boundary layer 
near the droplet surface, is essentially inviscid. Follow- 
ing Batchelor [ll], it can be shown that the axisym- 
metric steady state core motion in a confined domain 
for an incompressible liquid is given by, 

w/(r sin 0) = constant. 

AXIS OF SYMMETRY 

FIG. 1. Streamlines for the Hill’s sphericat vortex. 

In the above, the spherical polar co-ordinate system is 
used and w is the vorticity. In a spherical domain of the 
droplet, the core motion is a Hill’s spherical vortex 
[13] for which the stream function is given by (see Fig. 
11, 

I)~ = -iAr’(R* -r’)sin* 0, (1) 

and 
w&r sin 0) = 5A. (2) 

The constant A, used above, represents the strength of 
the Hill’s vortex and has to be determined. It should be 
emphasized again that in the Harper and Moore’s 
problem [lo] the strength could be determined to a 
first approximation as an inviscid solution and A 
= 3U,/(2R2) was known. This is the main difference 
between [lo] and this section of the present paper. 

The components of the velocity vector for the Hill’s 
vortex are, 

q,,,> = -A(R*-2rZ)sinf3, (3) 

q*,, = A(R* -r2)cos 0. (4) 

It should be noted that the characteristic velocity in the 
liquid droplet is U, = O(AR2) and the characteristic 
vorticity is of O(AR). 
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(B) J%pid holda~J’-hJw nna!~s~~ 
The techniques of the boundary-layer analysis are 

similar. in principle, to the Harper and Moore’s [ I()] 

analysis. The boundary-layer velocity field isezpressed 
as a perturbation to the Hill’s vortex solution valid jn 

the core. Therefore in the boundary layer. 

Here the quantities with subscript “o”refer to the Hill’s 
vortex solution and with subscript “1” refer to the 

perturbations. To match the boundary layer smoothI> 
with the core. we require: 

‘I, = 0 

C’J, = 0 i 
(6 I 

at the inner edge of the boundary layer. 
The steady-state continuity and momentum equa- 

tion can be written for the boundary layer. The 
continuity equation is. 

G’ q, = 0. (7) 

since the tluid is incompressible and y,, satisfies V q,, 
= 0. Taking curl of the momentum equation and 
noting that 4.04 = V(y’!?)-4 x (V x 4). we can write 

the momentum equation in the form. 

l’,V’U~, +v x ((I,, x C/j, 1 +V(y, x tu,,) 

+v x (4, x (‘1, ) == 0. (8) 

Here use has been made ol’ the fact that the Hill’s 
vortex solurion satisfies. 

7 
v-cu,, = 0: and v x (y,, x m,,) = 0. 

The momentum equation written above. in terms of 
w,, is non-linear. However, it can be linearized bq 

making an order of magnitude estimate for the various 

quantities involved. In the momentum equation. the 
viscous terms will balance the inertia terms only 

if the non-dimensional boundary-layer thickness 
(j = O(Re- ’ 2). Here 2 is non-dimensionalized with the 

length scale R. Therefore, for large Reynolds number 

in the liquid. 6 jX I and. in the boundary layer. i;ir 

= 0( I;‘&). For a high Reynolds number Ilow in a 

confined domain, the boundary layer is a region where 
vorticity gradients are large compared to unity. It is 

assumed, therefore, that the perturbation vorticity (t), 
when non-dimensionalized by (ilR) is of the order of 
unity. which is the same order as the Hill’s vorticity in 
the core. This assumption will be examined u posteriori 
when the strength of the Hill’s vortex has been 
determined. Therefore. 

and 

(I,,, = 0th). 

y; = O(2). 

Primes, in the above, denote the non-dimensional 

quantities and the ~Aocitj haa been 1ic.w- 

dimensionalized with the characteristic velocit) ,,IR’. 
It ib the recognition of the fact that the celocit 

perturbation is small even though the vortlcrty per- 
turbation is not small which allows ~1s to cutcud the 
Harper and Moore analysis into a parameter domain 
well beyond that originally intended. ,\n ctrder <ri 
magnitude estimate for each of thu terms m cquatiiin 

(8) can now be made. Retaining terms of O( 1 ), wt: c:tn 
write down the linearized momentum equation it, the 
CLxl-rbmmetric boundary lavel 

_i 
t -l,), 

‘I ? i ,.~(R’--,.~)cos()’ I”’ 
I ,-- I 1’ 

, _,(R-‘-.‘~~)siilLI”‘! + lKLIXXO 
rifl 

C’), li i‘) i 
1’ 

Here. use has been made of [he Hill‘s vortex sotutior!. 

Now. the quantities in tht: aho\c equation (9) arc 
non-dimensionalized. In particular. define. 

(j? _ :! Kt., =- ,,, JR-‘. ~ 

Define the non-dimensional ior~lci~y ;-I\ 

Q = ,;; _ 
C.11 

(‘i 
iii1 

A further transformation (srmilar to the one in [ I()]) 
of the dependent and independent variables is made 
below. Define, 

k[, _ 12 

‘;I11 if 
\I’iLi 

1’ = \‘sin’ 0. i, ! i , 11%) 

X z ~2cos30-$coso+~. i) .. .\’ C’ .Y, .: : ( i 7~) 

The momentum equation (9) 11w reduces to the well 

known form of the diffusion equation. 

i’ll. I‘ II 
; il.2 ;\ (I’) 

Here Y = 0 corresponds to the droplet surface and 

Y -+ x to the edge of the boundary layer. Similarly .Y 
= 0 corresponds to the from stagnation point region 
and A’ = X, = 3 to the rear stagnation point region. I! 

should be indicated that the boundary-layer equation 
(13) is not valid near the front and the rear stagnation 
point regions where some of the neglected terms in the 
momentum equation are of the same order as the 

retained terms and the boundary-layer approximation 
is no longer valid. Boundary condition to the above 
equation at Y = 0 is obtained by requiring continuity 
of shear stress at the gas -liquid interface. Therefore. 

where F(O) is the shear strc.ss distribution due to thf 
relative motion of the gas with respect to the droplet. 
Here it is assumed that there are no surface-active 
impurities present and that any forces due to surface 
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tension gradient are negligible compared to the shear 

stress. At the edge of the boundary layer we have, 

(2) as Y-,x, W-0. 

This condition is needed to match the solution 
smoothly to the Hill’s vortex solution. 

Another boundary condition is needed at some 
value of 0 = constant (or X = constant). Let us as- 

sume that, 

(3) at X = O+, W = g(Y) (14a) 

where g( Y) is some function of Y which is yet unknown 

and will depend upon the overall flow pattern, near the 
stagnation point regions and in the internal wake. 

Note that the boundary condition has been applied at 

some X, slightly away from the front stagnation point. 
Some explanation is needed about the boundary 

condition (1). In an actual situation of flow over a 

sphere, the gas phase boundary layer will separate at 
some value of 0 = c1,. Let us say the corresponding 

value of X is X,. From the separation point aft, up 
until the rear stagnation point, there will be a very 

small shear stress in the opposite direction due to 
reverse flow in the separated region. In this paper it is 
assumed that the shear stress is zero in the separated 

region. Note that the separation point is moved aft 
when the surface of the sphere is moving, as in this case, 

compared to the case of a solid sphere. The shear stress 
distribution at the droplet surface up until the point of 
separation was taken for flow over a sphere [15, 161 
and expressed in the form given below. 

F(B) = C,pL,U,f(H)/R; 0 < e <es 
= 0; e,y d e < 71, 

(14b) 

where C, is a constant andf(0) is some other function 

of 0. Now the boundary condition (1) at Y = 0 can be 
expressed in terms of X as below. 

At Y = 0, W = -3 + $+,+a,X+aZX2 

+%X3); 

o<x<x, 

= -3; x, 6X < x,. (14c) 

Here the constants a,,, a, . . . etc. are obtained by a 

polynomial fit of the quantity [Cr. (p,/,uJ (f(Q)/sin f3)] 
in terms of X. 

For simplification we define, 

K1 _u, 
AR2 ’ 

which is the ratio of the characteristic velocity in the 

gas (the free stream velocity) to the characteristic 
velocity in the liquid. 

The solution of the diffusion equation (13) subject to 
the above boundary conditions can now be written as 

1 

i 

-cc 

w= 2(7cX)“2 
g( Y’) [exp( - (Y - Y’)2/4X) 

() 

- exp( - (Y + Y’)*/4X)] dY’- 3+,(X, Y) 

+Kl&,(X> Y), (16) 
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where 4,(X, Y) = erfc( Y/2X ‘I’) and &,(X, Y) is a long 
function involving integrals of complementary error 

functions and is given in Appendix A. 

In the above solution g(Y) and K, are still un- 

knowns. This is similar to equation (3.20)in [lo] where 
y(Y) and C are the unknowns. However, here Ki 
represents the full vortex strength while C represents 
only the perturbation to the vortex strength. To 

determine these unknowns, an approach similar to the 
one in [lo] was taken in which a condition in the form 

of an integral equation is obtained. To deduce this 

condition the flow pattern near the rear stagnation 
point, where the flow turns and enters the internal 

wake, and in the internal wake (see Fig. 2) should be 

analyzed. 

/ 
BOUNDARY LAYER 

AXIS OF SYMMETRY 

FIG. 2. Schematic diagram of the liquid droplet motion with 
viscous boundary layer, core and internal wake. 

An order of magnitude analysis for the rear stag- 

nation point region was made by Moore [9] and used 
by Harper and Moore [lo]. A similar analysis for the 

magnitude of the terms in the exact equation ofmotion 
given by equation (8) estimated according to the 
boundary-layer approximation produced the same 

conclusion as in [lo]. Results of this analysis are 
reproduced here for the sake of completeness. From 
this order of magnitude analysis it can be shown that 

the turning region near the rear stagnation point is of 
size 0(Sli3) or 0(Re-“6). Also the perturbation vor- 

ticity in this region is O(p) or 0(Re-“6), where p = 71 
-0, and therefore the perturbation velocity is 
O(Re- ‘13). The velocity of the Hill’s vortex solution in 

this region is 0(/I) or 0(Re-“6). Therefore, the per- 
turbation velocity is smaller than the Hill’s vortex 

velocities by a factor of O(Re- ‘16). Thus the stream- 
lines are only slightly perturbed for the Hill’s vortex 
solution and the assumption $ : I/, in this region is 
correct to a first order approximation. Also the viscous 

forces are O@) or 0(Re-5’6) as compared to the 
inertia forces which are O(p) or O(Re- ‘16). Therefore it 
is assumed that the flow is inviscid and that the 
perturbation vorticity is convected without sensible 
diffusion in this region. 

Similarly it can be shown from the continuity of 
mass that the size of the internal wake is, 

6, = O(W). 
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Again from the order of magnitude analysis, it can be 
shown that the viscous terms in the internal wake are 
negligible compared to the inertia terms and that the 
wake is effectively inviscid. 

The above arguments imply as mentioned in [IO]. 

that the vorticity which is convected passively without 
diffusion in the region near the rear stagnation point 

and through the internal wake will turn near tht: l?ont 

stagnation point and re-enter the boundar) layer. 

However, it should be noted from the boundary 
condition given by equation (14~) that there is ;I 

discontinuity in W at Y = 0 near the front stagnation 
point (X = 0) since ~~~~ f 0 in general and this discon- 

tinuity will smoothen as the vorticity diffuses in the 
boundary layer. In Harper and Moore’s problem such 
a discontinuity did not exist because the shear stress at 

the interface in their problem was symm~tric~tl with 
respect to II = 7r:‘7. which is not so in our case. The 

above condition is used to determine the unknown 

function g( I’) and K L in equation (16). Mathemati- 

cally this condition is. 

CI/(O’. 1.) = w(X<:_ Y) = g(Y). (17) 

This condition when substituted in equation (10) 

leads to an integral equation similar to equation (3.3) 
in [IO]. Therefare. 

’ ----. 1” 2(nX,.)’ 2 ,,j 
$(Y’)K(Y, Y‘)dY’-3C/),(X,., Y t 

-!- K,&(X,.. Y) = g(Y) (!X) 

where 

K(Y,Y’)~:~x~[-(Y-~‘!)L.‘~x,J-cx~[--I~ 

+ Y’)214X,]. 

This equation is subjected to the restriction that g( Y 

+ %) = 0. 
This integral equation was solved by a numerical 

procedure given in Appendix B and the function .y( Y) 

and constant K, which represents the strength of the 
Hill’s vortex was determined. 

It was found that the value of K 1 is. 

K, = ;$ = #(4 IO). 

The value of K, was found to be between 4 and IO 

depending upon the stress imposed and the liquid 
viscosity chosen. The important point to note is that a 
similar ratio of the free stream velocity with respect to 
the droplet to the characteristic velocity in the liquid. 

that is, U f /AR2 is of the order of one for the Harper 
and Moore’s [lo] problem, or a difference of about an 
order of magnitude from our value. The reason for this 
is that the density and viscosity of the free stream fluid 
and the droplet in their problem are of the same order 
which is not so in our problem. 

Once g(Y) and K, are known, the solution in the 
boundary layer can be determined using equations 
(16)and(ll). 

Now we would like to examine whether o, is in fact 
of the order of one in the boundary layer, as was 
assumed for the analysis. For this purpose we would 

like to estimate the value of ~ti, at the droplet surface. 

The shear stress at the surface 01 :I rphcrc c;~n i)< 
expressed as. 

Here primes denote the non-dilnensi~~t~~~l yuamirie> 

and *lR” is used to non-dimensionalize velocity. 

The quantity on the LHS of the equation isjust c-j’, at 

the interface. In the second term on the RHS, Rr,, is oi 
the order of 200,/~,;~1 IS typically of the order 01‘ 1 ‘X1 
and for a conservative value of f ‘4RZ ;ts iii. rhs 

term is of O(5 sin Bf. Therefore. 

and the linearization of the motncntum cyuat~on and 
the following analysis is self-consirtent. 

Since the Prandtl number in the liquid is typically UI 

O(10 IO), the Peclet number based on the liquid 
droplet motion considered above is. PC>, .:= (I( 1 OOOl. 
With this high Peclet number in the liquid. we wouki 
expect a thin thermal boundary layer neat the droplet 
surface. The thickness of the thermal layer is. i;, 
zz 0(&J, 1 “f. 

Once the strength of the Hill’s vortex is known, &he 

characteristic residence time along a closed slreamlinc 
can be estimated. For a droplet of diameter SO tm: wti 

free stream relative gas velocity of 75 m.s which gilss 3 
characteristic liquid velocity of 2.5 m,‘s. this tint? IS. 

Similarly the thermal diffusion tlmc for the iuel 

(ethanol) droplet of 35pm radius at 2% K can kc 
&mated 

~rhwm.rl ii~llnu~~~ 
;: K’ 7:. 

This is of the order of 11)ms 111 tlx absence or au> 
vortex motion. In the presence of convective vortex 
motion. this characteristic thermal diffusion titne will 
reduce by an order of magnitude to about I ms for the 
same reasons as discussed in Section 2 with regard IO 

the vorticity diffusion time. 
The droplet lifetime as calculated in Section 2 15 (iI. 

the order of 2 ms which is comparable to the thermal 
diffusion time. Therefore, the droplet heating will be 
essentially unsteady. Also since the residence lime 
along a closed streamline which is also the residence 
time in the thermal boundary layer is about two orders 
of magnitude smaller than the thermal diffusion time. 
the thermal boundary layer is essentially quasi-steady. 
This short residence time along a closed streamline 
also implies that in the thermal core away from the 
boundary layer, the tem~r~~ture variation normal to 
the streamline will be important. The temperatut-c 
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variation along any streamline will uniformize and an 
average value over a closed streamline is used. This 

would simplify the energy equation in the core where 

the unsteady one-dimensional energy equation in 

streamline co-ordinates can be used as was done by 
Brignell [12] for his solute extraction problem. 
Coupling between the thermal boundary layer and 
the core is achieved by requiring the continuity of the 
gradient of the average temperature normal to the 
outer streamline for the core. 

(A) Thermal boundary layer 
The steady state energy equation for the incom- 

pressible fluid can be written as follows: 

q.VT = r,V*T. (19) 

In the above, CI, is assumed to be independent of 

temperature. 
In the above equation, the various quantities are 

non-dimensionalized similar to the vorticity equation. 

In particular, we define 

T, = T- T,(t) 

7’1, P - T, 

where T,(t) is the average temperature at the outer 

boundary of the core (or the average temperature at 
the boundary streamsurface) and is a function of time. 

Here, the boiling point of the liquid is chosen for non- 
dimensionalization because it is a constant upper 
bound for the surface temperature. Further define, 

6: = l/Pe, = aJ(AR3) 

R-r = R&y, 

retaining terms of O(1) in the equation (19), the 

following form of the energy equation is obtained. 

PT o’T aT 
2 + 2y,cosBG - smeae = 0. 
dY, 

(20) 

Here, primes for the non-dimensional temperature 
have been deleted for convenience. 

Transforming the independent variables 0 and y, to 
X, and Y, as was given for the viscous boundary layer 
by equations (12b) and (12c), we get the well known 
form of the diffusion equation given below. 

t3*T dT __--. 
iY* -2x (21) 

f f 

The boundary conditions for this equation are similar 
to that for the viscous boundary layer. They are, 

at K =O, g=/(X,,t) (2la) 
* 

at y+cr;, 
aT 
r, = C,. (2lb) 

Here f’(X,) is the temperature gradient along the 
droplet surface and is obtained by coupling with the 
gas phase boundary-layer solution. This represents the 
heat flux entering the droplet from the gas side and can 
be estimated in similar fashion to the shear stress when 
the droplet is not sufficiently heated and the vapori- 
zation rate is small. Note that the heat flux will be time 

dependent for the vaporization problem due to the 

temporal variation of surface temperature and thus the 

vaporization rate. The parameter C1 is related to the 

average temperature gradient normal to the streamline 

at the bounding streamline for the core region and will, 
similarly, be time dependent for the vaporization 
problem. 

If we define, 

v=ar_, 
av, 1’ 

then equation (21) and the boundary conditions given 
above and valid at any instant, can be written as, 

a2v av 
au,2 - ax, 

at x =O, V =f(X,)-Cl 

at Y,+ co, v = 0. 

(224 

(22b) 

Another boundary condition at some value of X, is 

needed to solve equation (22). Let, 

at X, = O+, V = h(k;). WC) 

Here h(K) is a function similar to g(Y) in Section 2 and 

has to be determined. 
Using arguments similar to that for wl, it can be 

shown that in the turning region near the rear 
stagnation point and in the internal wake, there is 

negligible diffusion of heat and that the temperature 
gradient V is convected without diffusion through this 
region to re-enter the thermal boundary layer. This 

condition leads to an equation similar to (17). 

V(O, K) = h(K) = V(X,, K). (23) 

The condition given by equation (23) along with the 

differential equation (22) with boundary conditions 
(22a) and (22b) imply that the integral off(X,) over the 
droplet surface which represents the total heat flux into 

the droplet will equal the heat flux across the portion of 
the bounding streamsurface near the droplet surface 

on which a constant average temperature gradient 
exists. We thereby assume that the flux ofheat from the 

part of the bounding streamsurface along the internal 
wake is small compared to the total heat flux which is 
true because of the small fraction of the surface area for 
this part of the streamsurface. Thus the value of C1 

could be determined iff(X,) is known. That is, 

f(X,)dX,. 

The condition given by equation (23) will lead to an 
integral equation for h(x) similar to the one given by 

equation (18). This integral equation subject to the 
condition h( Y, + co) = 0, can be solved and h( Y,) and 
C, determined similar to the way g(Y) and K, were 
determined. Once these quantities are known, solution 
in the thermal boundary layer can be determined. 

(B) Thermal core 
Mathematical analysis for the core is similar to that 

in [12] except for the difference in nomenclature. 
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The unsteady energy equation valid in the core is. 

iT 
-i lj.VT = r,V’T. 

(‘t (24) 

Because of the short residence time along a closed 

streamline compared to the thermal diffusion time, this 
equation is integrated along a closed streamline and an 

average temperature on that streamline is defined as, 

In addition to the gradient boundary condition. the 
above equation was also solved for T = I at C#J = 4,. 
which is relevant when the surface temperature has 

reached a value close to the boiling point and the 
droplet core is still heating. The results of the above 
solution are similar to the results shown in Fig. 5 01 

[l2]. These solutions were obtained primarily to 
demonstrate that the thermal diffusion time is signi- 
ticant!) reduced by about an order of magnitude 
because of the vortex motion. 

We further define the non-dimensional quantities as 
follows. 

$ = - Xll/:(.4RJ) = 4pL( 1 -p’)sin’O 

Here subscript “o” has been dropped for the Hill’s 

vortex solution and the various terms used have been 
defined in the nomenclature. We further non- 
dimensionalize temperature and time as follows: 

Now equation (24) can be written in streamline co- 

ordinates, deleting primes for non-dimensional tem- therefore 

perature and time as, 

i7 

is (26) 

This equation is identical to equation (16) in [12]. We 
have the initial condition, 

Using the definitions of ci,, ~7~ and 1; and taking into 
account the area ratio of the bounding streamsurface 
to its part along the interface. we find. 

(I ) at 5 = 0. T = 0, (36a) 

since the core is initially at 7;). 

The boundary 4 = c#J,, corresponds to the outer 
boundary of the core near the droplet surface. Its value Therefore. 

can be estimated from the thermal boundary layer 
thickness. It was found that ~+5,, 2 0.16. We have the 
following boundary condition at this end. where 

(/!I = f/j,,. 
I- 7’ 

( 2 ) at 
i (/I 

= C‘,. (26b) 

where c‘, is a constant obviously related to C’, used in 
equation (21 b). The boundary condition at the center 
of the vortex is obtained by assuming that T is a 
regular function of 4 at this point. Thus the condition 

obtained is. 

It will be more meaningful to solve the coupled 

quasi-steady thermal boundary layer equation and the 
unsteady core equation, when the gas phase coupling is 
done and the vaporization is taken into account 
because as the core gets heated, the droplet surface 
temperature will rise resulting in an increased vapori- 
zation rate and therefore a decrease in heat fiux into 
the core. 

This condition is identical to equation (18) in Ll2]. 
Since equation (26) and the boundary conditions are 
linear, the solution to the above problem can be 
obtained by solving the problem with normalized 

The main difference between this problem and the 
Brignell’s [ 121 problem is in the coupling between the 

thermal core and the boundary layer in this problem, 
Brignell could neglect the existence of the con- 
centration boundary layer without causing any signi- 

ficant error in themass-transfer problem. Although the 
rempzrature change across the thermal layer is of 

O(Pf/, I”) (in the non-dimensional sense) and rhc 

neglect of the thermal layer would cause only a small 
error of the same order in determining the temperature 
field III the core, such a coupling is essential in our 

ultimate problem because the fuel vapor fraction and 
hence the vaporization rate, which in turn determines 
the heat flux. depends exponentially on the surface 
temperature. 

To determine the relation between C, and <~- and 

thus the coupling between the core and the thermal 
boundary layer, we have in the thermal layer. 

0,.,/R = O(Pcm ' ') 

4. RESULTS AND DISCUSSIOIV 

The diffusion equation (26) was solved numerically 
for the normalized boundary condition at the end 4 
= 6,. The results for the case of given temperature 
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using Harper and Moore’s approach which was pri- 
marily developed for a droplet motion in a fluid of 
comparable density and viscosity. It is found that the 
droplet motion is still a Hifl’s vortex whose strength is 
different by about an order of magnitude from the 
Harper and Moore vortex and that a thin boundary 
layer near the droplet surface exists. The same ap- 
proach for the droplet motion can be used in the 
presence ofvaporization when the gas phase boundary 
layer is coupled. Although in that case continuity of 
tangential velocity will be required in addition to the 
continuity of shear stress at the interface which will 
necessitate an iterative solution of the gas-liquid 
boundary layers. The quasi-steady assumption for the 
liquid motion will still hold although the change in 
droplet radius with time will have to be taken into 
account. 

b.16 0.32 0.48 e' 0.64 0.80 0.96 

FIG. 3. Average temperature on a closed streamline as a 
function of d, at various instants when [ZT/CY#],~,~,~, = 1. 

gradient at the boundary and for the case of given 
temperature at the boundary are shown in Figs. 3 and 
4 respectively. For the first case, a steady-state solution 
does not exist and the temperature keeps rising, 
approaching a linear profile. In reality, of course, the 
surface temperature cannot exceed the boiling point of 
the liquid so that temperature gradient at the surface 
would eventually decrease with time. For the latter 
case, it can be seen from Fig. 4 that for T = 0.09, the 
interior is heated to about 92% of the boundary value. 

Because of a short residence time along a closed 
streamline in the core for vortex strength in the range 
of interest, the above analysis shows that the heating 
time of the core will be independent of the strength of 
the vortex and hence the motion generated inside the 
droplet. Thermal diffusion will be essentially normal to 
the streamlines. The vaporization rate and the heating 
of the core are coupled through the thermal boundary 
layer which determines the surface temperature and 
therefore the vaporization rate and consequently the 
heat flux into the core. In the gas-liquid coupled 
problem with vaporization, the energy equation in the 
thermal core has to be modified to take into account 
the temporal variation of r/j and the radius of the 
droplet. But the averaging process along a stream 
surface will still hold for the same reasons as here. 

01 I E I I I I 8 , 

0 16 0 24 0.32 0.40 0.48 0.56 0.64 072 080 0.88 0.96 

+ 

FIG. 4. Average temperature on a closed streamline as a 
function of cb at various instants when [ T],,,=,,,C, = 1. 

This implies that it takes about 10% of the characteris- 
tic thermal diffusion time (R’,&), for the droplet to be 
fully heated in the presence of convective motion. This 
was mentioned earlier on physical grounds. Similarly, 
it can be observed from Fig. 3 that in about 5% of the 
characteristic time (R2/o11)j the temperature profile 
becomes almost linear. 

In the present paper, the motion generated inside a 
droplet in a gaseous environment has been studied 

In the droplet vaporization problem with convective 
field, it is seen that the unsteady effects will persist due 
to droplet heating for the major part of the droplet 
lifetime even though the internal circulation will 
significantly enhance the heating as shown in this 
paper. The rapid mixing or uniform temperature 
assumption therefore does not lead to an accurate 
prediction ofeither the temporal or spatial dependence 
of temperature. 
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The function 4,(X, Y )is a solution of the diffusion equation 
corresponding to the second part of the boundary condition 
at Y = 0, that is. (a,+(r,X +c~~X’~‘r~?(~‘) and is given as 
follows: 

CHAUFFAGE D’IJNE GOUTTE LlQUlDE COMBUSTIBLE 
AVEC IJNE CIRCULATION INTERNE 

Resume----On ttudie la circulation interne d’une goutte liquide en deplacement dam un gar pout- dcs 
parametres caracttrisant un melange disperse air-combustible dans un cas typique. L’analyse montre un 
mouvement axisymitrique et quasi-statique du liquide avec un tourbillon spherique central entourc par unc 
couche limite visqueuse et un sillage interne. L’intensite du tourbillon est determine en liaison avcc Ia tension 
de cisaillement sur la surface de la goutte. De plus I’analyse indique que le chauffage de la gouttc est variabtc 
durant sa duree de vie. La circulation interne rend effectivement monodimensionnelte la conduction 
thermique dans le noyau liquide. La couche limite thermique pres de la surface est etudiee et on montre que lc 
champ de temperature dans la goutte peut etre determine a partir de la contrainte a t’interface gaz liyuidc. 
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HEIZUNG MITTELS JWSSIGER OLTROPFCHEN MIT INNERER STROMLJNG 

Zu~mme~f~ung--.Die u-mere Str~mungeines fltissigen Tropfchens, das sich durch ein Gas bewegt, wird in 
einem Parameterbereich analysiert, der fiir em brennendes Luft-Brennstoff-Gemisch in einer typischen 
Brennkammer maggebend ist. Die Analyse zeigt eine axisymmetrische quasistationiire Fltissigkeitsbe- 
wegung mit einem spharischen Kernwirbel, der durch eine ztihe Grenzschicht und eine Wirbelschleppe 
umgeben ist. Die Wirbelstarke wird als eine Funktion der Schubspannung iiber der OberflZche des 
Tropfchens berechnet. Auijerdem zeigt die Anatyse, da13 die Erw~rmung des Tropfchens wahrend der Zeit 
seines Auftretens instabil ist. Es zeigt sich, daR die innere Stromung den WLmetransport durch Leitung im 
Fhissigkeitskern wirkungsvoll in eine Richtung flieBen laht. Die thermische Grenzschicht in der Nahe der 
Oberfllche wird ebenfalls analysiert, und es wird gezeigt, dab das Temperaturfeld des Tropfchens durch die 

Angabe der Gas-Fl~ssigkeit-Grenz~dingungen berechnet werden kann. 
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HAl-PEB KAflJII4 XMAKOl-0 TOI’UIMBA lIPM HAJIkiWM BHYTPEHHEfi 
~~PKY~~~~~ 

Amomrpm - AHann BHyTperiHefi uapxynsumi Kannw xwA~oc+w, npoxoA5irueZl tlepe3 ra3, npo- 

BOABTCII B Auana3oHe napaMerpoB, xapaKTepHbrx nn~ ropeHun c~e~ti pacnburewioro TonnkiBa c 

~03Ayxo~ B TannrHoR KaMepe cropaena. B pe3ynbTaTe aHann3a BbwBneHo 0cecwdMeTpwifioe 

KBasacTaqnoHapHoe TeseHue X~AKOCTU, B K~TOPOM iiMeeT MecTo ci$epwecKoe snxpeaoe KApo, 

OKpy~eHHOe BR3KHM nOrp~nqHbIM CJIOeM W BHyT~HH~M CneAOM. ~HTe~CUBHO~Tb BSiXpSl OUPe- 

.nensercR KaK@y~~ffHff KacaTenbHoro HanpameHHff na rfof3ep~~0~~~ Karuuf. KpoMe Toro BbnwieHo, 

'IT0 HiWpeB KanItA IlBAReTCR HeCTaUHOHapHblM 38 BpeMSl W013HA KaIUlH. nOKa3aHO,YTO BHyTPeHHRI 

IUipKyJXSlrl&iR BeAeT K OAHOMepHOCTH TenJIOIIpOBOAHOCTH B KApe. TaKxce aHanEi3iIpyeTCK TennOBOii 

norpaHIiliHbrZi cnoii y noBepxnocTa Kannn u noKa3aH0, YTO TeMnepaTypnoe none xannu MOXeT 

6bfTb onpeAeneH0, ecna A3BecTrsbi ycnosmr Ha fpatwue pa3Aena ra3+OiAKocTb. 


